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Al / Al(100) B,I / Si

How can we simulate the dynamics of molecular
systems over experimental time scales?



Objective:

To calculate dynamics of a surface over time scales which are much longer
than can be calculated with direct classical dynamics.

Problem: <«— time scale gap —»
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Most interesting transitions are rare
events (much slower than vibrations)

Simulating a transition for a typical
rare event with classical dynamics 0.5 eV
can require ~10'2 force evaluations )



Transition state theory

A statistical theory for calculating the rate
of slow thermal processes

The primary task is to find an N-1
dimensional dividing surface that
represents a bottle neck for the transition

Harmonic transition state theory

Need to find saddle points on the
energy surface
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Methods for determining reaction rates

Finding Saddle points Single Ended:
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The Nudged Elastic Band Method

Recent developments:
*[Becond order optimizers

* Improved tangent - conjugate gradients
* Climbing image - quasi-newton (bfgs)
e Double nudging e[dInternal coordinates
(Wales) [Rigid constraints (string method)
Force on each image: Ve potential
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Minimum mode following methods

Dynamics: know the initial state, but [ \/ / )
don’t know the final state! a 7/)

¢ Find the lowest curvature mode

- Dimer method (VVoter, Henkelman, Jonsson)
- Lanczos (Barkema, Mousseau)
- Langrange multipliers (\Wales)

* Follow the minimum
mode up the potential,
minimize in all other
modes

* Many independent
searches can be
used to find unknown
reaction mechanisms




Adaptive kinetic Monte Carlo

Combine saddle point searches

o e
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Al / Al(100) ripening

Complex events do happen

* A compact island forms in
1 ms at 300K

* Find many events which are
not included in standard
KMC event tables
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Al / Al(100) growth

Multi-atom events can be sl i
important for dynamics _
* Exchange events involving %‘ 2 -
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to smooth growth on Al at =3 ]
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Dynamics from Density Functional Theory

When there is no accurate
empirical potential ... N Vad

¢ 2

* Saddle points can be .
found directly with DFT. 4

* Min-mode following
methods are in VASP,

SIESTA, SOCORRO, and
CASTEP

* Only a few tens of
saddle point searches
are possible in each
new state

Energy (eV)

* Can be used to find
unexpected reaction
pathways and dynamics 0 5 10 15 20
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From DFT to kinetic Monte Carlo: Pd/MgO

If all important mechanisms are found, _
KMC can reach longer time scales Experiment

® DFT calculations of Pd diffusion on
MgO show that small clusters are more
mobile than the Pd monomer

* DFT diffusion rates are used in a KMC
simulation to compare with experiment
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Application to Hydrogen Storage Materials

Challenges for simulating the kinetics
of hydrogen storage materials

a. Need to develop potentials for modeling q) 8
H, dissociative adsorption at catalysts,

or use DFT

OO

b. Since H diffusion barriers will change NI
with environment, it is unlikely that any b
few reaction mechanisms can be used
with standard KMC to model the storage
kinetics of a material 808
c. A phase change in a material will limit O
the use of traditional kinetic Monte Carlo O@ (\oraﬁ

Provides an exciting opportunity for O Mater‘)

new methods!



Quantum effects for hydrogen kinetics

Zero point and tunneling o
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Instanton: Saddle point for Feynman
chain to cross the barrier



Adaptive kinetic Monte Carlo

Strengths and weaknesses

Saddle point searches are independent, and can be computed
in a parallel (distributed) environment

Need to find all important (low energy) reaction mechanisms
- contrast with accelerated dynamics methods (Voter)

Accuracy determined by sampling:

- Fewer searches for expensive (DFT) calculations
- Extensive sampling when using empirical potentials

No simple relation between sampling and accuracy

If the important processes are known, they can be used in a
KMC simulation to reach longer time and length scales

Can include quantum effects as necessary
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Freely available software tools

* http://eon.cm.utexas.edu/ The EON distributed computing project

* http://theory.cm.utexas.edu/fida/ FIDA Distributed computing framework
upon which eon is built

* http://theory.cm.utexas.edu/vtsttools/ Dimer, NEB, and dynamical matrix
methods implemented in the VASP code

* http://theory.cm.utexas.edu/bader/ Bader charge density analysis



